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Abstract
The free energy of the spin- 1

2 Heisenberg antiferromagnet (HAF) on a squagome
lattice is calculated within the Suzuki–Takano quantum decimation technique.
The resulting specific heat exhibits an additional peak in the low-temperature
region.

PACS numbers: 75.10.Jm, 75.50.Ee

Two-dimensional quantum Heisenberg spin systems with strong frustration which do not
exhibit long-range magnetic order in the ground state are currently a subject of experimental
and theoretical interest. There is a lot of numerical evidence suggesting that there exists a
gap in the excitation spectrum of such systems. This is an illustration of a general rule which
states that if there is a singlet–triplet gap in the excitation spectrum of the Heisenberg system
then there is no long-range magnetic order in its ground state [1]. Furthermore, this gap
also influences the low-temperature dependence of the specific heat: in the low-temperature
region there may exist an additional maximum. According to many numerical studies, see
e.g., [2–4], the spin- 1

2 Heisenberg antiferromagnet on a kagomé lattice can serve here as an
example.

A squagome lattice has been introduced recently. It was suggested [5], using 1/N

expansion and the mean field approximation, that the Heisenberg antiferromagnet,

H = K
∑
〈i,j〉

�Si · �Sj (1)

on this lattice should have a disordered ground state and two-peak specific heat. �Si stands
in equation (1) for the spin operator on the site i,K is the positive coupling constant with
included temperature and the sum runs over nearest spins. However, the squagome lattice is,
in fact, the square lattice with additional points put in the middle of edges (decorated), see
figure 1. The Heisenberg spins are put on each lattice point and antiferromagnetic interactions
are assigned along each edge of the lattice. Clearly, this is not a uniform [6] lattice, i.e. it is
not built from regular polygons, such as square, triangular or kagomé lattices. Let us stress
the fundamental geometrical similarity of the kagomé and squagome lattices: in both cases
the even polygon on the lattice is surrounded only by triangles and vice versa. This similarity
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Figure 1. The squagome lattice is equivalent to the decorated square lattice with interactions
distributed in a ‘checkerboard’ way. The antiferromagnet on the squagome lattice may be formed
by putting five-spin clusters (dark and light) from figure 2 together.
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Figure 2. Eight- and five-spin clusters which are the basic blocks for defining the renormalization
group transformation.

also manifests in the infinite ground state degeneracy [7] (with respect to rotation of spin
vectors) of classical spin systems on both lattices. It was suggested that in the ‘quantum’
ground state of spin antiferromagnets on such lattices, there can exist independent magnon
states [8] and consequently the macroscopic magnetization jumps in the magnetic field [9].
Our main motivation to investigate properties of the Heisenberg model on a squagome lattice,
being one of ‘corner-sharing triangles’ lattices, is to show that the origin of low-temperature
thermodynamical behaviour is the geometrical structure of these lattices.

In this paper it is reported how one can justify the existence of the low-temperature specific
heat peak for the Heisenberg antiferromagnet on the squagome lattice within a quantum
renormalization scheme proposed by Suzuki and Takano [10, 11]. This method has already
been applied to analyse the properties of many spin systems: the one-dimensional Hubbard
model [12], a model of a quantum spin glass [13], the t–J model [14] and the Heisenberg
model on Sierpiński fractal and kagomé lattices [15, 16]

Let us describe the decimation procedure in more detail. The aim is, as usual, to find
a renormalized coupling constant and subsequently to calculate the free energy of the spin
system. In the case under consideration it consists of two steps. In the first step, we make a
cluster approximation and split the infinite system (Hamiltonian H) into eight-spin subsystems
(Hi), shown in figure 2. For the eight-spin cluster we calculate the partition function
Tr1−8 exp(−Hi) = Zi . Now, recalling that renormalization group transformation should
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Figure 3. The |renormalized coupling constant|−1 versus |coupling constant|−1 for the spin- 1
2

antiferromagnet on a squagome lattice.

preserve the partition function we map the Zi on Z′
i = Trα−ε exp(−H ′

i ) which is the partition
function for the cluster of five spins (α . . . ε), shown in figure 2. In the second step, these
five-spin clusters are put together to obtain the renormalized spin system (Hamiltonian H ′) on
the squagome lattice, see figure 1. Five-spin and eight-spin clusters are the smallest systems
taking into account frustration. Note that the approximation made here is that we neglect the
non-commutativity of the spin operators while splitting the Hamiltonian H into Hamiltonians
Hi and subsequently put H ′

i together to obtain the renormalized Hamiltonian H ′, i.e.

exp

(∑
i

Hi

)
≈
∏

i

exp(Hi) ≈
∏

i

exp(H ′
i ) ≈ exp

(∑
i

H ′
i

)
. (2)

Note also that this approximation has been made in opposite directions, and therefore the
non-commutative effects have, at least to some extent, been cancelled [10]. The first sum and
the first product in equation (2) run over eight-spin clusters, whereas the second product and
the second sum run over five-spin clusters on the renormalized lattice. The transformation
does not change the partition function, thus

Tr1−8 exp(−KS) = Trα−ε exp(−G − K ′S′) (3)

with

S = �S1 · ( �S2 + �S4) + �S3 · ( �S2 + �S5) + �S8 · ( �S5 + �S7)

+ �S6 · ( �S4 + �S7) + ( �S2 + �S7) · ( �S4 + �S5) (4)

and

S′ = �Sα · ( �Sβ + �Sγ + �Sδ + �Sε) + �Sβ · �Sγ + �Sδ · �Sε. (5)

To calculate effectively the renormalized coupling constant K ′ one assumes that, as in a case
of classical decimation, the correlation function does not change under our renormalization
transformation

1

12

Tr1−8[S exp(−KS)]

Tr1−8[exp(−KS)]
= 1

6

Trα−ε[S′ exp(−K ′S′)]
Trα−ε [exp(−K ′S′)]

. (6)

The renormalized coupling constant is given by the implicit relation (6) and can be calculated
numerically. The dependence K ′ = φ(K) obtained in this way is shown in figure 3. One
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Figure 4. The internal energy (per spin) of the spin- 1
2 antiferromagnet on a squagome lattice.
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Figure 5. The specific heat (per spin) of the spin- 1
2 antiferromagnet on a squagome lattice.

can see from this figure that RG flow is always towards high temperatures (the dashed line
represents the relation K ′ = K). Having obtained the dependence K ′ = φ(K) one can
calculate from equation (3) the free energy per spin, which transforms as

e−Nf(K) = e−Ng(K)−N ′f (K ′) (7)

with N = 8, N ′ = 5 and G = Ng . g represents the contribution to the free energy (per spin)
from degrees of freedom which have been traced out in RG. Iterating equation (7) one obtains
the free energy per spin in the thermodynamical limit

−f/kBT =
∞∑
i=0

(
5

8

)i

g(K(i)) (8)

with K(i) representing the i-times transformed coupling constant K and kB being the Boltzmann
constant. The internal energy of the system under consideration is presented in figure 4. The
ground state energy E0 = −0.419 3 (per spin) while exact diagonalization of finite systems and
subsequent extrapolation to the thermodynamic limit gives E0 = −0.440 1 [7]. In the specific-
heat dependence on temperature, which is shown in figure 5, one encounters two peaks. The
broad peak located at T ∼ 0.85 is a typical one whereas the second one, at T ∼ 0.10, indicates
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that an additional energy scale is relevant in the system under consideration. A similar feature
was observed in a case of frustrated quantum spin systems on other lattices (kagomé [4],
�-chain [17, 18] or Sierpiński fractal [15]). The additional energy scale in all those systems
seems to be related to the energy of the lowest spin triplet excitation which, although small,
does not disappear in the thermodynamic limit. In fact, the energy spectrum of the eight-spin
system on a squagome lattice (which is �-chain, with periodic boundary conditions) with
a gap to the triplet excitations is a substantial part of the RG procedure presented here. It
was argued [17, 18] that in the case of the �-chain, the additional low-temperature peak
displayed in the specific heat and reflecting the low-energy part of the energy spectrum is not
a ‘finite size’ effect. Using equation (7) and passing to the thermodynamic limit one meets
this gap again in the temperature dependence of the specific heat. This may be a hint that
the Heisenberg antiferromagnet on a squagome lattice has a disordered ground state. One
can also speculate that two-dimensional spin- 1

2 Heisenberg antiferromagnets containing the
�-chain-like subsystems will display similar properties.

The total entropy,
∫∞

0
c
T

dT , corresponding to the calculated dependence c on T is 1.55
ln2 and 80% of this value is related to the first peak. This inconsistency and the difference
(4.7%) between the RG ground state energy and its value from exact diagonalization is the
result of approximation (2) and the smallness of clusters used in the implementation of the RG
procedure. Note, however, that this simple approach seems to capture qualitatively the
low-temperature thermodynamics of the Heisenberg antiferromagnet on a squagome lattice.

To conclude, we have presented the results of the investigation of the thermodynamical
properties of the spin- 1

2 Heisenberg antiferromagnet on the squagome lattice. The temperature
dependence of the specific heat strongly suggests that there is no long-range magnetic order
in the ground state of this system and there exists a spin gap to the triplet excitations.
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